Westgate Primary School

Calculation Policy June 2023

J.Hattersley

4/10/2023

Progression in Calculations Policy

At the centre of the mastery approach to the teaching of mathematics is the belief that all pupils have the potential to succeed. Children should all have access to their age-appropriate curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling varied and challenging problems. Similarly with calculation strategies, pupils must not simply rote learn procedures but demonstrate their understanding of these principles and concepts through the use of concrete materials and pictorial representations to ensure fluency and depth of understanding
This calculation progression document is based on the key principles of a mastery approach as outlined in the tale below:
a) NCETM

Teaching for Mastery

The rationale of the concrete-pictorial-abstract (CPA) approach is that for pupils to have a true understanding of a mathematical concept, they need to master all three phases. Reinforcement is achieved by going back and forth between these representations. Pupils who grasp concepts rapidly should be challenged through rich and sophisticated problems before any acceleration through new content. Those pupils who are not sufficiently fluent with earlier material should consolidate their understanding, including additional practice, before moving on.
There is also an emphasis placed on instant recall of number bonds and times tables. These need to be mastered to aid with calculations and more challenging problems in readiness for the Multiplication Test at the end of Year 4.

This document outlines the progression of different calculation strategies that could be taught and used from Reception - Year 6, in line with the requirements of the 2014 Primary National Curriculum. This guidance isto maketeachers andparent/carers aware ofthe progression ofstrategiesthatpupils areformally taughtthat will support themtoperformmentaland written calculations. In addition, it will supportteachers inidentifying appropriate pictorial representations and concrete materials to help develop understanding. This guidance only details the strategies; teachers must plan opportunities for pupils to apply these. Concrete materials shown here are for exemplification; there are many other resources which can be used to aid pupil understanding.

Here are some of the important key elements to develop children's conceptual and procedural fluency with calculations:

1. Develop children's fluency with basic number facts

Fluent computational skills are dependent on accurate and rapid recall of basic number bonds to 20 and times-tables facts. At Westgate we have found that spending a short time everyday on these basic facts quickly leads to improved fluency. One way this is carried out is through our daily whole school ΠT Rockstars timestable challenges and Flashbacks. We are clear that this is not meaningless rote learning; rather, this is an important step to developing conceptual understanding through identifying patterns and relationships between the tables (for example, that the products in the $6 \times$ table are double the products in the $3 \times$ table). This has helped children develop a strong sense of number relationships, an important prerequisite for procedural fluency. Children in Shanghai learn their multiplication tables in this order to provide opportunities to make connections. At Westgate we learn our times tables in this order so children can identify patterns and relationships.

```
*10
*5
x4
x3
x6
```

2. Develop children's fluency with mental and written methods

Efficiency in calculation requires having a variety of mental strategies. It is important that children can mentally recall number bonds and are able to partition numbers to bridge through ten. Children are taught that it is helpful to make 10 as this makes the calculation easier. Our number facts progression plan at Westgate ensures that the children practise number facts, and they are taught strategies which ensures that the children move away from 'counting on' to develop more efficient strategies so children can gain instant recall of facts.

Teaching column methods for calculation provides the opportunity to develop both procedural and conceptual fluency. We ensure that children understand the structure of the mathematics presented in the algorithms, with a particular emphasis on place value. This is developed through using base ten apparatus and a range of models and images in the textbooks to support the development of fluency and understanding. Informal methods of recording calculations are also an important stage to help children develop fluency with formal methods of recording. Informal methods are only used for a short period, to help children understand the internal logic of formal methods of recording calculations. They are stepping stones to formal written methods. For example,

\mathbf{h}	\mathbf{t}	$\mathbf{0}$
+	2	$\frac{1}{3}$
	6	
2	4	4

3. Don't count, calculate

Children benefit from being helped at an early stage to start calculating, rather than relying on 'counting on' as a way of calculating. For example, with a sum such as: $4+7=$ Rather than starting at 4 and counting on 7 , children could use their knowledge and bridge to 10 to deduce that because $4+6=10$, so $4+7$ must equal 11. (See our number facts progression plan)

4. Automaticity of number facts and times tables

At Westgate we have a clear progression of the teaching of number facts and times tables to ensure children develop fluency of these facts. This frees up working memory and ensures accuracy when calculating.

5. Look for patterns and make connections

Children are given opportunities in the lessons to look for patterns and make connections. The maths journals are used to explore patterns, relationships and reasoning. The question "What's the same, what's different?" is used frequently to make comparisons

6. Use of intelligent Practice

The practice children engage in provides the opportunity to develop both procedural and conceptual fluency. Children are required to reason and make connections between calculations. Calculations are chosen carefully to develop children's connections and strategies. The calculations in the maths no problem textbooks provide opportunities for making these connections. For example,

Children's conceptual understanding and fluency is strengthened if they experience concrete, visual and abstract representations of a concept during a lesson. Moving between the concrete and the abstract helps children to connect abstract symbols with familiar contexts, thus providing the opportunity to make sense of, and develop fluency in the use of, abstract symbols. Maths lessons at Westgate move between the concrete, visual and abstract.

8. Contextualise the maths

Mathematics lessons often start with a contextualised problem. This supports the children's understanding of the abstract calculation.

9. Use of questioning to develop reasoning

Teachers' have a strong and consistent focus on questioning that encourages and develops their mathematical reasoning. For example, there is always an emphasis on the 'how do you know?' as opposed to 'what is the answer?' Children know that they need to explain how they worked out a calculation or solved a problem, and justify their reasoning.

10. Use of precise mathematical vocabulary and STEM sentences

The quality of children's mathematical reasoning and conceptual understanding is significantly enhanced if they are consistently expected to use correct mathematical terminology (e.g. saying 'digit' rather than 'number') By all using the precise vocabulary, everyone is clear which part of the calculation we are talking about eg, divisor, dividend, quotient. High expectations of the mathematical language used is essential, with staff only accepting what is correct. Consistency across the school is key.

Examples of precise Vocabulary	
Ones	Factor product
is equal to (is the same as)	Whole part whole
Exchange exchanging regrouping	Dividend divisor quotient
calculation equation	Known unknown
A stem sentence can work alongside a mathematical representation by complementing it and revealing the structure.	For example There are 12 stars. One third of the stars is equal to 4 stars.

11. Identifying misconceptions

Difficult points need to be identified and anticipated when lessons are being designed and these need to be an explicit part of the teaching, rather than the teacher just responding to children's difficulties if they happen to arise in the lesson. The teacher should be actively seeking to uncover possible difficulties because if one child has a difficulty it is likely that others will have a similar difficulty. Difficult points also give an opportunity to reinforce
that we learn most by working on and through ideas with which we are not fully secure or confident. Discussion about difficult points can be stimulated by asking children to share thoughts about their own examples when these show errors arising from insufficient understanding. For example: A visualiser is a valuable resource since it allows the teacher quickly to share a child's thinking with the whole class.

Maths No Problem Textbooks

The textbooks allow teachers and pupils to explore each topic in great depth. Each lesson has an explore task which provides a contextualised problem, guided practice and independent tasks. The varied examples in the lessons have been specifically chosen to stretch pupils into harder concepts and create challenge and depth. The maths no problem maths lessons include all of the above key elements.

Progression in each calculation

	Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Counting a set of objects. Knowing 1 more or1 less Place numbers in order of size	Combining two parts to make a whole: part whole model Starting at the bigger number and counting on Regrouping to make 10	Adding multiples of 10. Adding three single digits. Column method with no regrouping and regrouping. (2 digit numbers)	Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column methodregrouping. (Decimalswith different amounts of decimal places)
Subtraction	One less than / Taking away ones	Taking away ones Number bonds model. Counting back Find the difference Part whole model Subtract from 10	Counting back Find the difference Part whole model Make 10 Column methodwith and without regrouping 2 digits	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimals- with different amounts of decimal places)
Multiplicatio	Doubling	Doubling Counting in multiples Arrays (with support) Making and adding equal groups	Doubling Counting in multiples Repeated addition Arraysshowing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Calculation Guidance- Addition

	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 1 YR	Count all 1:1 correspondence Joining two groups and then recounting all objects using 1:1 correspondence Counting a set of objects Knowing 1 more or 1 less Place numbers in order of size	One more One less Bigger Larger			

New Vocabulary	Concrete

Calculation Guidance- Subtraction

Yr/ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage $\mathbf{3}$ Yr1 Yr2	Find the difference Pupils should be encouraged to compare two amounts using practical equipment so they can visually see the difference. The bar model is a good representation to show this. The bar model also allows you to demonstrate the connections eg. How addition and subtraction are related.	One less Take away Less than The difference Subtract Minus Fewer Decrease	Compare amounts and objects to find the difference. Use cubes to build towers or makebars to find the difference. Use basic bar models with items to find the difference.	Count on to find the difference: Drawbarstofindthedifference between 2 numbers. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
$\begin{array}{\|l\|} \hline \text { Stage } \\ \hline \underline{4} \\ Y_{r 1} \\ Y_{r 2} \\ \hline \end{array}$	Part Whole Model Teach both addition and subtraction alongside each other, as the pupils will use this model to identify the link between them.	Part Whole Inverse	Linktoaddition-usethepartwhole model to help explain the inverse betweenadditionandsubtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part whole model.	5 10 Move to using numbers within the part whole model\|,

Yr/ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
$\begin{array}{\|l} \hline \text { Stage } \\ \hline \underline{\mathbf{5}} \\ \mathrm{Yr} 1 \\ \mathrm{Yr2} \end{array}$	Make 10 Partitioning in different ways is so important in the early stages. Children need to know quick recall of different ways to make all numbers not just number bonds to 10 or 20 eg . To make $7=6+1=$ $5+2=4+3=$	Ten frame Remainin g Take off Count back	$14-5=$ Make 14 on the ten frame. Take away the fourfirsttomake10and thentakeawayonemoresoyouhave takenaway 5 . Youare leftwiththe answer of 9 .	Start at 13 . Count back 3 to reach 10 . Thencount back the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the previous 10 ? (6) How many do we have left to take off? (2)
Stage 6	Partitioning to subtract It is important to look at different ways to partition numbers. The Dienes equipment can be used alongside the partitioning method to model this.		Examples	There were 618 children that remained in the hall.	

Calculation Guidance- Multiplication

\begin{tabular}{|c|c|c|c|c|c|}
\hline Yr/ Stage \& Strategy/ Method \& \begin{tabular}{l}
New \\
Vocabulary for the Stage
\end{tabular} \& Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
Stage \\
1 \\
YrRYr \\
1 \\
Yr2
\end{tabular} \& Doubling \& \begin{tabular}{l}
Double \\
Count on (from, to) Count back (from, to Countir ones, twos, tens... Is the same as
\end{tabular} \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
is 10
\end{tabular} \& \begin{tabular}{l}
Drawpicturestoshowhowtodouble a \\
Double 4 is 8

\square
\square

Draw pictures to show how to double a number.| number.
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline | $\underline{\text { Stage }}$ |
| :--- |
| $\underline{\mathbf{2}}$ |
| Yr R Yr 1 |
| |
| + |
| Yr 2 |
| $(\times 2,5$, |
| $10)$ |
| $Y r 3(x 3,4$, |
| $8)$ | \& Counting in multiples \& | Multiplied |
| :--- |
| by The productof Groups of Lots of Is equal to | \& Countinmultiplessupported by concrete objects inequal groups. \& Useanumberlineorpicturesto continuesupportincountingin multiples. \& | Count out loud in multiples of a number. |
| :--- |
| Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$ |

\hline
\end{tabular}

Yr/ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
			Use different objects to add equal groups.	There are 3plates. Each plate has2star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 Repeated addition can be shown on a labelled or empty number line. Eg $5+5+5=15$: 0123456789101112131415 Begintorelaterepeatedadditionto multiplication using 'lots of'. e.g. 3 lots of $5=15$	Write addition sentences to describe objects and pictures. This then leads to writing related multiplication sentences e.g. $2 \times 5=10$
$\frac{\text { Stage }}{} \frac{1}{3}$					
Yr 2	Repeated addition				

Yr/ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { Stage } \\ & \hline \underline{4} \\ & (Y r ~ 1) \\ & \text { Yr2 } \\ & \text { Yr3 } \end{aligned}$	Arrays - showing commutative multiplication	Array Commutative	Create arrays using counters/cubes /numicon to show multiplication sentences. $\mathrm{Eg} 4 \times 6=24$ Begin to look at arrays in different orientations to make the link between. Eg $5 \times 3=15$ and $3 \times 5=15$ (commutativity)	Drawarraysindifferent rotations to find commutative multiplication sentences. Link arrays to area of rectangles:	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

$\begin{array}{\|l\|} \hline \text { Yr } / \\ \text { Stage } \end{array}$	Strategy/ Method	New Vocabulary for the Stage	Concrete			Pictorial	Abstract	
Stage $\underline{6}$ Yr4 (2 and 3 digit $x 1$ digit) Yr 5 (4 digits x 1 or 2 digits) Yr6(4 digits x 2 digits)	Short column Multiplication It is important that the children are able to see all the representations so they can fully understand the concept and not just a procedure. The children need to be using the vocab of how many tens make 1 hundred, how many ones in a ten etc	Column multiplication	 \mathbf{h} \mathbf{t} 2 2 \mathbf{o} 4 7 \times 4 1 8 8			47	$=28$ ones 2 tens an $=16$ tens 1 hundred	
$\begin{aligned} & \hline \text { Yr } / \\ & \text { Stage } \end{aligned}$	Strategy/ Method	New Vocabulary for the Stage	Concrete			Pictorial	Abstract	
$\begin{aligned} & \text { Stage } \\ & \text { Y3 } \end{aligned}$	Long Multiplication		$\begin{array}{r} 32 \\ \times 24 \\ \hline 8 \\ 120 \\ 40 \\ \hline 760 \\ \hline 768 \end{array}$	$\begin{aligned} & (4 \times 2) \\ & (4 \times 30) \\ & (20 \times 2) \\ & (20 \times 30) \end{aligned}$	Long Multiplication			

Division

Yr/ Stage	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 1 Yr R	Halving	Half Halve Count out Share out Left Left over ...is the same as Equal		One sweet for you, one for me... Is it fair? How many do we each have?	
Stage $\underline{2}$ Yr R Yr 1	Sharing objects Equally	Share Group Divide Half Halve Count out Share out Left Left over Is the same as Is equal to	Ihave10cubes;canyousharethem equally into 2 groups? 15 shared between 5 is 3 :	Childrenuse picturesorshapes to share quantities. $\begin{gathered} 8 \div 2= \\ 4 \end{gathered}$ How many groups of 4 are there in 12 stars?	Share 9 buns between three People: $\begin{aligned} & 9 \\ & \vdots \\ & \vdots \\ & = \\ & 3 \end{aligned}$

$\begin{aligned} & \mathrm{Yr} / \\ & \text { Stage } \end{aligned}$	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { Stage } \\ & \underline{\mathbf{3}} \\ & \text { Yr1 } \\ & \text { Yr2 } \end{aligned}$	Division as grouping	Equal groups	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. There are 10 sweets. How many people can have 2 sweets each?	Use a number line to show jumps in groups. The numberofjumpsequals the number of groups. Thinkofthebaras awhole. Splitit intothe numberofgroupsyouare dividingbyandworkouthowmany would be within each group.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
$\underline{\text { Stage }}$ $\underline{4}$ $Y \mathrm{Y} 2$ Yr 3 Yr 4	Division within arrays	Array Inverse	Link division to multiplication by creating an array and thinking about the number sentences that can be created: Eg $15 \div 3=55 \times 3=15$ $15 \div 5=3 \quad 3 \times 5=15$	Drawanarrayanduselinestosplit the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $7 \times 4=28$ $4 \times 7=28$ $28 \div 7=4$ $28 \div 4=7$

	Strategy/ Method	New Vocabulary for the Stage	Concrete	Pictorial	Abstract
Stage 6 Yr3 (2 digit by 1 digit) Yr4 (up to 3 digits by 1 digit) Yr5 (up to 4 digits by a 1 digit remain der. Interpr et remain ders based on contex t)	Short division	Bus stop method	Use place value counters to divide using the bus stop method alongside: $42 \div 3=$ Start with the biggest place value; we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over: Weexchangethistenfortenonesand then share the ones equally among the groups:	Children can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder: Move onto divisions with a remainder:

